MTSS-GAN: Multivariate Time Series Simulation Generative Adversarial Networks

MTSS-GAN is a new generative adversarial network (GAN) developed to simulate diverse multivariate time series (MTS) data with finance applications in mind. The purpose of this synthesiser is two-fold, we both want to generate data that accurately represents the original data, while also having the flexibility to generate data with novel and unique relationships that could help with model testing and robustness checks. The method is inspired by stacked GANs originally designed for image generation. Stacked GANs have produced some of the best quality images, for that reason MTSS-GAN is expected to be a leading contender in multivariate time series generation.
Google stock data
Autocorrelation Correlation structure Predictive score t-SNE, PCA visualization  


A Data-driven Market Simulator For Small Data Environments

Neural network based data-driven market simulation unveils a new and flexible way of modelling financial time series without imposing assumptions on the underlying stochastic dynamics. Though in this sense generative market simulation is model-free, the concrete modelling choices are nevertheless decisive for the features of the simulated paths. We give a brief overview of currently used generative modelling approaches and performance evaluation metrics for financial time series, and address some of the challenges to achieve good results in the latter. We also contrast some classical approaches of market simulation with simulation based on generative modelling and highlight some advantages and pitfalls of the new approach. While most generative models tend to rely on large amounts of training data, we present here a generative model that works reliably in environments where the amount of available training data is notoriously small. Furthermore, we show how a rough paths perspective combined with a parsimonious Variational Autoencoder framework provides a powerful way for encoding and evaluating financial time series in such environments where available training data is scarce. Finally, we also propose a suitable performance evaluation metric for financial time series and discuss some connections of our Market Generator to deep hedging.
Rough Volatility model Stock prices of S&P 500 firms
MMD  


Quant Gans: Deep Generation Of Financial Time Series

Modeling financial time series by stochastic processes is a challenging task and a central area of research in financial mathematics. As an alternative, we introduce Quant GANs, a data-driven model which is inspired by the recent success of generative adversarial networks (GANs). Quant GANs consist of a generator and discriminator function, which utilize temporal convolutional networks (TCNs) and thereby achieve to capture long-range dependencies such as the presence of volatility clusters. The generator function is explicitly constructed such that the induced stochastic process allows a transition to its risk-neutral distribution. Our numerical results highlight that distributional properties for small and large lags are in an excellent agreement and dependence properties such as volatility clusters, leverage effects, and serial autocorrelations can be generated by the generator function of Quant GANs, demonstrably in high fidelity.
S&P 500 index
W1 metric DY metric ACF score Leverage effects  


Time-Series Generative Adversarial Networks

A good generative model for time-series data should preserve temporal dynamics, in the sense that new sequences respect the original relationships between variables across time. Existing methods that bring generative adversarial networks (GANs) into the sequential setting do not adequately attend to the temporal correlations unique to time-series data. At the same time, supervised models for sequence prediction—which allow finer control over network dynamics—are inherently deterministic. We propose a novel framework for generating realistic time-series data that combines the flexibility of the unsupervised paradigm with the control afforded by supervised training. Through a learned embedding space jointly optimized with both supervised and adversarial objectives, we encourage the network to adhere to the dynamics of the training data during sampling. Empirically, we evaluate the ability of our method to generate realistic samples using a variety of real and synthetic time-series datasets. Qualitatively and quantitatively, we find that the proposed framework consistently and significantly outperforms state-of-the-art benchmarks with respect to measures of similarity and predictive ability.
Synthetic AR Gaussian process Multivariate sinusoidal sequence Google stock data UCI Appliances energy prediction dataset Lung cancer pathways dataset
t-SNE, PCA visualization Discriminative score Predictive score  


Quick And Easy Time Series Generation With Established Image-Based GANs

In the recent years Generative Adversarial Networks (GANs) have demonstrated significant progress in generating authentic looking data. In this work we introduce our simple method to exploit the advancements in well established image-based GANs to synthesise single channel time series data. We implement Wasserstein GANs (WGANs) with gradient penalty due to their stability in training to synthesise three different types of data; sinusoidal data, photoplethysmograph (PPG) data and electrocardiograph (ECG) data. The length of the returned time series data is limited only by the image resolution, we use an image size of 64x64 pixels which yields 4096 data points. We present both visual and quantitative evidence that our novel method can successfully generate time series data using image-based GANs.
Sinusoidal sequence Photoplethysmograp Electrocardiograph
Context FID score MMD  


Modeling Financial Time-Series With Generative Adversarial Networks

Financial time-series modeling is a challenging problem as it retains various complex statistical properties and the mechanism behind the process is unrevealed to a large extent. In this paper, a deep neural networks based approach, generative adversarial networks (GANs) for financial time-series modeling is presented. GANs learn the properties of data and generate realistic data in a data-driven manner. The GAN model produces a time-series that recovers the statistical properties of financial time-series such as the linear unpredictability, the heavy-tailed price return distribution, volatility clustering, leverage effects, the coarse-fine volatility correlation, and the gain/loss asymmetry.
Stock prices of S&P 500 firms
Linear unpredictability Fat-tailed distribution Volatility Clustering Leverage effects Coarse-fine volatility correlation Gain/Loss asymmetry  


STCN: Stochastic Temporal Convolutional Networks

Convolutional architectures have recently been shown to be competitive on many sequence modelling tasks when compared to the de-facto standard of recurrent neural networks (RNNs), while providing computational and modeling advantages due to inherent parallelism. However, currently there remains a performance gap to more expressive stochastic RNN variants, especially those with several layers of dependent random variables. In this work, we propose stochastic temporal convolutional networks (STCNs), a novel architecture that combines the computational advantages of temporal convolutional networks (TCN) with the representational power and robustness of stochastic latent spaces. In particular, we propose a hierarchy of stochastic latent variables that captures temporal dependencies at different time-scales. The architecture is modular and flexible due to the decoupling of the deterministic and stochastic layers. We show that the proposed architecture achieves state of the art log-likelihoods across several tasks. Finally, the model is capable of predicting high-quality synthetic samples over a long-range temporal horizon in modeling of handwritten text.  


Stock Price Manipulation Detection using Generative Adversarial Networks

We implemented Generative Adversarial Networks (GANs) for detecting abnormal trading behaviors caused by stock price manipulations. Long short-term memory (LSTM) was used as a base structure of our GANs, which learned normal market behaviors in an unsupervised way. After the training, the discriminator network of GANs was used as a detector to discriminate between normal and manipulative trading. Our work is different from the previous work in that we did not use manipulation cases to train the neural networks. Instead, we used normal data to train them, and simulated manipulation cases were only used for testing purposes. The detection system was tested with the trading data from the Stock Exchange of Thailand (SET). It can achieve 68.1% accuracy in detecting pump-and-dump manipulations in unseen market data.  


T-CGAN: Conditional Generative Adversarial Network for Data Augmentation in Noisy Time Series with Irregular Sampling

In this paper we propose a data augmentation method for time series with irregular sampling, Time-Conditional Generative Adversarial Network (T-CGAN). Our approach is based on Conditional Generative Adversarial Networks (CGAN), where the generative step is implemented by a deconvolutional NN and the discriminative step by a convolutional NN. Both the generator and the discriminator are conditioned on the sampling timestamps, to learn the hidden relationship between data and timestamps, and consequently to generate new time series. We evaluate our model with synthetic and real-world datasets. For the synthetic data, we compare the performance of a classifier trained with T-CGAN-generated data, against the performance of the same classifier trained on the original data. Results show that classifiers trained on T-CGAN-generated data perform the same as classifiers trained on real data, even with very short time series and small training sets. For the real world datasets, we compare our method with other techniques of data augmentation for time series, such as time slicing and time warping, over a classification problem with unbalanced datasets. Results show that our method always outperforms the other approaches, both in case of regularly sampled and irregularly sampled time series. We achieve particularly good performance in case with a small training set and short, noisy, irregularly-sampled time series.  


Hierarchical Deep Generative Models For Multi-Rate Multivariate Time Series

Multi-Rate Multivariate Time Series (MR-MTS) are the multivariate time series observations which come with various sampling rates and encode multiple temporal dependencies. State-space models such as Kalman filters and deep learning models such as deep Markov models are mainly designed for time series data with the same sampling rate and cannot capture all the dependencies present in the MR-MTS data. To address this challenge, we propose the Multi-Rate Hierarchical Deep Markov Model (MR-HDMM), a novel deep generative model which uses the latent hierarchical structure with a learnable switch mechanism to capture the temporal dependencies of MR-MTS. Experimental results on two real-world datasets demonstrate that our MR-HDMM model outperforms the existing state-of-the-art deep learning and state-space models on forecasting and interpolation tasks. In addition, the latent hierarchies in our model provide a way to show and interpret the multiple temporal dependencies.
Medical Information Mart for Intensive Care MIMIC-III database USHCN climate dataset
Forecasting Interpolation